TE- EXICSEM II (cosus) SE. Digital com.

QP Code: 31640

(3 Hours)

[Total Marks: 80

N.B.

1] Question no.1 is compulsory

- 2] Attempt any three questions out of remaining live questions
- 3] Assumptions made should be clearly stated
- 4] Illustrate answers with sketches wherever required

Q.1	1	Attempt any four	} ·
	a	Describe the Shanon-Hartley capacity theorem.	5
		Consider a binary data sequence 10101010.Draw the waveforms for the	5
		given binary data sequence, using unipolar RZ and split phase Manchester.	,
	c	State two criteria which a spread-spectrum communication system must	50
	۱ ۲	satisfy. Justify that the spread-spectrum signals are transparent to the	ا چې ا
		interfering signals, and vice-versa.	
		Explain the Coherent and non coherent digital modulation techniques.	5
			5
	e	Define code rate, code efficiency, systematic and non systematic in the context of linear block code.)
		context of linear block code.	
$\frac{1}{2}$		· · · · · · · · · · · · · · · · · · ·	-
Q.2	_+	Consider the fitte course cumbaic of a discrete memoryless swirce and their	10
	a	Consider the five source symbols of a discrete memoryless source and their	10
		respective probabilities as 0.4, 0.2, 0.2, 0.1, and 0.1.	
		i) Create a Huffman Tree for Huffman source coding technique to find the	
		codeword and length of codewords for each source symbol.	
		ii) Determine the average codeword length of the specified discrete	
		memoryless source.	
		iii) Comment on the results obtained	ļ <u>, , , , , , , , , , , , , , , , , , ,</u>
-	Ь	Describe in convolution code, Time domain approach, and Transform-	10
		domain approach to determine encoder output.	-
Q.3			<u></u>
	a -	Justify that the probability of errorin matched filter does not depend on the	10
		shape of input signal. Derive the relevant expression.	
	b	For a Quadrature Phase Shift Keying (QPSK), Explain the modulator,	10
	\rightarrow	demodulator, Bandwidth and advantages:	
		<u></u>	
Q.4			<u> </u>
		Describe coherent detection method of binary FSK signals. Also draw power	10
		spectra for BFSK(modulated signal.	
	Ь	In a digital communication system, the bit rate of a bipolar NRZ data	10
		sequence is 1 Mbps and carrier frequency of transmission is 100MHz.	
. }		Determine the symbol rate of transmission and the bandwidth requirement of	
		the communications channel for	
		i) 8-ary PSK system	
		ii) \ 18-ary PSK system.	
Q.5			
	a	The Generator matrix of (6, 3) systematic block code is given below:	10
	1	[100011]	
(1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
100		G = 010101	
4		[001110]	
		Find the code Vectors, parity check matrix, and the error syndrome.	·
			,

	b	A (7, 4) cyclic code is described by a generator polynomial	10
		$g(x) = x^3 + x + 1$	
		i) Find out the generator matrix	
		ii) Parity checks matrix.	
		iii) Draw the syndrome calculator and explain how received message is corrected?	`.
Q.6		Attempt the following (any two).	
	а	Write short note on Intersymbol interference (ISI) and.	10
	b	Explain with the help of block diagrams and waveforms, the following techniques of spread spectrum communication. (a) Direct sequence (b) Frequency hopping.	10 00
	С	What are different decoding methods of convolutional codes? Explain any one in detail.	DIO

418019

Sem. VI CBSGS

TE (EXTC)

QP Code: 31652

(3 Hours)

[Total Marks:80]

Question no. 1 is compulsory.

- Solve any three questions from remaining five questions.
- In all four questions to be attempted.
- Figures to the right indicate full marks.
- Explain multirate signal processing with applications.

- If $h(n) = \{1, 2, 3, 4\}$ is impulse response of FIR Filter, Realize the filter (b) in direct form.
- State and prove Parseval's Theorem. (c)
- State advantage and disadvantage of digital filters. (d)
- $x(n) = \{1, 2, 3, 4\} \text{ find DFT of } x(n)$ 2. (a)

10

10

Using results obtained in part (i) and otherwise find OFT of (ii)following sequences

$$a(n = \{4, 1, 2, 3\} b(n) = \{2, 3, 4, 1\} c(n) = \{3, 4, 1, 2\}$$

 $d(n) = \{4, 6, 4, 6\}$

- A digital filter is describe by the following differential equation (b) y(n) = 0.9 y(n-1) + bx(n)
 - Determine **b** such that $|\mathbf{H}(0)| = 1$
 - Determine the frequency at which $|H(w)| = \sqrt{2}$ (ii)
 - Identify the filter type based on the passband. (iii)
- If $x(n) = \{1 2 3 4 5 6 7 8\}$, Find X(X) using DITFFT. Compare computational 10 complexity of above algorithm with DFT.
 - Show the mapping from S plane to Z plane using Impulse Invariant Method 10 (b) and explain its limitation. Using this method, determine H(Z) if

$$H(s) = \frac{3}{(s+2)(s+3)}$$
 if $T = 0.1$ sec

- Design a Linear Phase FIR Low Pass filter of Length 7 and cut off frequency 10 (a) 1 rad/sec using rectangular window.
 - If $x(n) = \{1, 2, 3, 2\}$ and $h(n) = \{1, 0, 2, 0\}$ (b)

- Find circular convolution using time domain method.
- Find linear convolution using circular convolution.

TURN OVER

QP Code: 31652

5. (a) Design a digital Butterworth filter for following specifications using Bilinear 10 transformation technique
 Attenuation in Pass band = 1.93dB,
 Pass band Edge frequency = 0.2π,
 Attenuation in Stop band = 13.97dB,
 Stop band Edge frequency = 0.6π.
 (b) With a suitable block diagram describe sub-band coding of speech signals... 10
6. Attempt the following: (a) Short note on dval tone multifrequency detection using Goertzel's algorithm 8
 (b) Compare FIR and IIR filters.
 (c) Finite word length effect in digital filters.
 6

Sem-II EXTC (CBGS) 20/5/16

Compuler Communication & Telecom Notwork Q.P. Code: 588502

(3 Hours) [Total Marks: 80

N.	B.: (1) Question No.1 is compulsory.	
	(2) Solve any Three out of remaining questions.	
	(3) Assume suitable data wherever required.	
	(4) Answers to the questions should be grouped and written together.	
1.	(a) Draw sublayer of data link layer. Explain the role of each layer.	5
	(b) Differentiate the host to host delivery provided by data link layer and network layer.	5
	(c) What is socket address? Explain with example. Comment on socket programming.	5
	(d) Compare between circuit switching and packet switching.	5
2.	(a) List the role of application layer and explain one application layer protocol.	10
	(b) Classify unicast routing protocol. Explain exterior routing protocol in brief.	10
3.	(a) Compare between Ethernet LAN and IEEE 802.11 WLAN.	5
	(b) What is DSL and HFC? Describe in brief.	5
	(c) What is peer to peer communication? Describe decentralized peer to peer sharing.	10
4.	(a) What are the performance parameters of network? Explain in brief.	5
	(b) Classify multiple access techniques. Explain CSMA/CA technique with backoff algorithm.	5
	(c) Describe in details the physical transmission media for computer communication networks	10
5.	(a) What are the demerits of Distance Vector algorithm? How it is overcome?	10
		10
	in detail.	
6.	Write short notes on (any Two):	20
	(a) Networking Devices	
	(b) ATM	
	(c) Congestion Control	
	(c) IPv6	

TELEVISION ENGINEERING

Q.P. Code: 588601

				(3 Hours) [Total Marks	3:80
		N.B. :	1.	Question no.1 is compulsory.	
			2.	Answer any three question out of remaining questions.	
			3.	Assume suitable data if required.	
1	. (a)	Wha	t are t	the advantages of digitization in television systems?	5
	(b)			lustrate the different levels of CVS and define them.	5
	(c)	Defin		ect ratio & state standardized value of aspet ratio? Give reason	5
	(d)	Defin	ne cha	tracteristics of colour: Luminance, Hue and Saturation.	5
2.	(a)		/ & ex lvanta	xplain image orthicon camera tube in detail with advantages & ges.	10
	(b)	Discu neat	ass fea diagra	atures of the PAL system. Explain delay-line PAL method with am.	10
3.	(a)			nroma sub-sampling and its types in detail.	10
	(b)	Draw	& ex	plain block diagram of NTSC colour receiver.	10
4.	(a)	Expla	nin D2	-MAC packet format/signal and state characteristics of D2-MAC.	10
	(b)			te on wide high definition television and its standards.	10
5.	(a)	Expla	in in	brief direct to home television.	10
				ference between component digital video & composite video.	10
ó.	Wri	te shor	t note	on (any four):	20
				SE system	
		(b)	Meri	ts and Demerits of LED display	
		(c)		correction.	
		(d)	Fregi	gency Interleaving	
		(e)	Displ	lays: Plasma, LCD & LED.	

(3 Hours)

7/6/2016

Q.P. Code: 588801

(3)	H	0	uı	(8)
•				_

|Total Marks: 80

N.	В.	: ((1)	Question	ONE	is	compulsory
----	----	-----	-----	----------	-----	----	------------

- (2) Solve any THREE out of remaining questions.
- (3) Draw neat and clean diagrams.
- (4) Assume suitable data if required.

1. Attempt any FOUR from the following:

20

- (a) For NMOS resistive load inverter with $R_L = 50 K$ find V_{IL} and V_{OL} if $V_{DD} = 5 V$, $V_{TO} = 1 V$, $K_n = 100 \,\mu\text{A/V}^2$, neglect body bias effect and channel length modulation.
- (b) With help of appropriate circuit diagram and waveforms, explain charge sharing problem of dynamic logic. How to overcome the same.
- (c) Explain the significance of Level 1 MOSFET model parameters.
- (d) Implement 4: 1 MUX using Transmission gate technology.
- (e) Explain advantages and disadvantages of Pass Transistor logic in VLSI Design.
- 2. (a) Explain working of CMOS Inverter with help of Voltage Transfer 10 Characteristics and derive expression for V_{IL} and V_{IH}.
 - (b) Implement 1 bit full adder circuit using standard CMOS logic, dynamic logic and pseudo NMOS logic.
- 3. (a) Draw six transistors SRAM cell and explain its read 0, read 1, write 0 10 and write 1 operation with the help of appropriate waveforms.
 - (b) What is Carry Look Ahead (CLA) adder. Write equations for carry bits of 5-bit CLA in terms of input bits only i.e carry generate and carry propagate and implement the same using domino logic.
- 4. (a) For 2 input CMOS NAND gate find V_{OL} , V_{OH} , V_{HI} , and V_{IL} . Assume that both the inputs are switching simultaneously. Consider NMOS and PMOS with following parameters. $V_{DD} = 5V$, $V_{TOn} = 1V$, $K_n = 100 \mu A/V^2$, $V_{TOp} = -1V$, $K_p = 25 \mu A/V^2$.
 - (b) Give NMOS fabrication process flow with help of neat sketches of appropriate masks and cross section at each process steps.

Q.P. Code: 588801

2

5.	(a)	Implement 4x4 NAND based ROM array to	store "1001", "0101", "1010"	5
		and "1100" in the memory.		
	(b)	Explain the effect of Interconnect scaling parameters of VLSI circuits.	ng on various performance	10
	(c)	Draw layout of 3 transistor (3-T) DRAM (cell using lambda rules.	5
6.	Wri	te short notes on any FOUR:		20
	(a)	Power Distribution schemes		
	(b)	Array Multiplier		
	(c)	Interconnect Delay Model		
	(d)	NAND Flash Memory		
	(e)	Column Decoders		

T. E. Scm II (BGJ EXTC 1/06/16 Operating Systems Q.P. Code: 588702

10

10

(3 Hours) [Total Marks: 80

N.B.: (1) Question No.1 is compulsor	N.B.	3. : (1)	Question	No.1	is	compulsor
--------------------------------------	------	-----------------	----------	------	----	-----------

- (2) Attempt any three questions out of remaining five questions.
- (3) Assume suitable data whenever required but justify the same.
- (4) Assumption made should be clearly stated.
- 1. (a) Explain different file operations in brief.
 - (b) What are the characteristics of Real Time OS?
 - (c) What is system call? Explain any five system calls.
 - (d) Differentiate between Deadlock avoidance & Deadlock prevention.
- 2. (a) Explain process-thread state transition diagram in linux.
 - (b) Explain clearly how UNIX performs file management using I-nodes. 10
- 3. (a) Explain clearly paging and segmentation based memory management 10 techniques using diagram.
 - (b) What critical section of a process? Describe two solutions to achieve mutual Exclusion of critical sections in an OS.

4. (a) Consider the following precess

Process	Arrival time	Service Time
P	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Solve the above given problem with shortest remaining time first by drawing gantt chart and also calculate the average waiting time, turnarourd time and throughput.

- (b) Explain RAID with different levels.
- 5. (a) Explain the working of EDF and RMA real time scheduling algorithms. 10
- (b) What is semaphore? Give an implementation of bounded buffer producer consumer problem using semaphore.
- 6. (a) Define the meaning of a race condition? Use an Execution Sequence to illustrate your answer.
 - (b) Explain different file allocation techniques in an OS.