Electronico SS 23/05/15

QP Code: 3313

(3 Hours)

[Total Marks: 80]

N.B.: (1) Questions No.1 is compulsory.

- Attempt any three questions from the remaining questions.
- Solve every question in an order.
- Prove convolution property of Fourier Transform.

20

- State and prove final value Theorem of Laplace Transform.
- Prove shifting property of Z transform.
- Determine energy and/or power of following signals.

(i)
$$x(n) = \left(\frac{3}{5}\right)^n u(n) - (4)^n u(-n-1)$$

(ii)
$$x(t) = 4e^{-2t} u(t)$$

Obtain output y (t) = x (t) * h (t) using graphical convolution.

10

$$x(t) = 1+t \text{ for } -1 \le t \le 0$$

= 1-t \text{ for } 0 \le t \le 1

$$h(t) = 1$$
 for $0 \le t \le 2$
= 0 elsewhere

Obtain h (n) for all possible ROC conditions. Also plot the ROC comment 10 (b) on causality and stability at the system.

H (z) =
$$\frac{4 z (z^2 - 8z + 9)}{(z - \frac{1}{3}) (z - 3) (z + 4)}$$

(a) A C.T. LTI system has

$$\frac{d^{2}y(t)}{dt'} + \frac{5dy(t)}{dt} + 6y(t) = \frac{7dx(t)}{dt} - 3x(t)$$

- Determine Transfer function.
- Obtain impulse response. (ii)
- (iii) Obtain unit Ramp response.
- Plot the magnitude and phase spectrum of the periodic signal. Shown below.

TURN OVER

JP-Con.: 11308-15.

2

(c) Obtain initial and final value

4

if X (z) =
$$\frac{3z^2}{4z^2 - 5z + 1}$$

4. (a) If two subsystem are connected in cascade

8

$$h_1(n) = (0.9)^n u(n) - 0.5(0.9)^{n-1} u(n-1)$$

$$h_2(n) = (0.5)^n u(n) - (0.5)^{n-1} u(n-1)$$

Determine overall impulse response of the interconnected system.

(b) Obtain z transform of the following signal using properties of z transform.

(3) $^{n-1}$ (π)

- $x(n) = \left(\frac{3}{4}\right)^{n-1} \sin\left(\frac{\pi}{6}n\right) u(n)$
- (c) Prove Parsevals theorem of Fourier series.

()

5. (a) Obtain circular convolution of

5

$$x_1(n) = [3 \ 2 \ 1 \ 4]$$

$$x_2(n) = [57-82]$$

(b) Obtain Laplace Transform of following waveforms using its properties.

5

10

(c) Obtain zero input response, zero state response and total response of a D. T. L. T. I. system.

$$y(n) + 7y(n-1) + 12y(n-2) = 4x(n) - 11x(n-1)$$

If
$$y(-1) = 1$$
 $y(-2) = 2$ $x(-1) = 0$.

If input x(n) = u(n) = unit step signal

TURN OVER

3

6. (a) Obtain Fourier transform of the following signal.

(b) Plot even and odd parts of following signals.

(c) Obtain h (t) for causal and stable system If

H (s) =
$$\frac{s^2 - 3s + 11}{(s-i)(s+2)(s+3)}$$

Plot the ROC and pole's and zero's of the system.

JP-Con.: 11308-15.

19/5/15

OP Code: 3306

(3 Hours) [Total Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from remaining questions.
 - (3) Assume suitable data if necessary.
- 1. Solve any four:
 - (a) What is the need of Input offset voltage compensation and how it can be achieved.
 - (b) Design RC phase shift oscillator to produce sinusoidal output of 5KHz. 5
 - (c) Design schmitt strigger circuit to achiev upper and lower threshold voltage as 1.5 volts.
 - (d) Explain Resolution, Accuracy and settling time with respect to DAC. 5
 - (e) Design a Flasher circuit using IC 555, in which lamp should remain on for 4 sec and off for 2 sec.
- 2. (a) Derive closed loop parameters for Inverting opamp.
 - (b) Design a second order KRC low pass filter with a cut off frequency fo = 2KHz 10 and Q = 5.
- 3. (a) Design a triangular wave generator to get the output frequency of 1.5 KHz and $V_{o(p-p)} = 7.5 V$ using IC 741.
 - (b) Explain counter type ADC with neat diagram.
- 4. (a) Calculate output voltage for the given amplifier.

TURN OVER

QP Code: 3306

	(b)	(i) Prove that opamp can be used as current to voltage converter.	4
		(ii) Compare normal rectifier with precision rectifier.	
•		(iii) Define different parameters of PLL.	
- -			- 4
5.	(a)	Explain different comparators, state different applications and suggest modifications for practical comparator.	1(
	(b)	What are different possible IC 723 based voltage regulators. Design voltage regulator to achieve $V_o = 12V$ and $I_o = 1$ Amp.	1(
6.	(a)	Explain function of each block of PLL.	1 (
	(b)	Design voltage Regulator using IC LM317 for the given specifications. $V_o = 12 \pm 3$ volts and $1L = 100$ mA.	1(